

Deep Learning for Macroeconomists

Jesús Fernández-Villaverde¹

November 4, 2021

¹University of Pennsylvania

Background

- Presentation based on joint work with different coauthors:
 - 1. Solving High-Dimensional Dynamic Programming Problems using Deep Learning, with Galo Nuño, Roberto Rafael Maura, George Sorg-Langhans, and Maximilian Vogler.
 - 2. Exploiting Symmetry in High-Dimensional Dynamic Programming, with Mahdi Ebrahimi Kahou, Jesse Perla, and Arnav Sood.
 - 3. Financial Frictions and the Wealth Distribution, with Galo Nuño and Samuel Hurtado.
 - 4. Programming FPGAs for Economics, with Bhagath Cheela, André DeHon, and Alessandro Peri.
 - 5. Structural Estimation of Dynamic Equilibrium Models with Unstructured Data, with Sara Casella and Stephen Hansen.
- All the papers share a common thread: how to compute and take to the data the aggregate dynamics of models with heterogeneous agents.

Resources

• These slides are available at:

```
https://www.sas.upenn.edu/~jesusfv/deep-learning_chicago.pdf
```

• My teaching slides:

```
https://www.sas.upenn.edu/~jesusfv/Continuous_Time_2.pdf
```

- Examples and code at:
 - $1. \ \texttt{https://colab.research.google.com/drive/1_4wL6lqA-BsgGWjDZv4J7UtnuZk6TpqW?usp=sharing}$
 - 2. https://github.com/jesusfv/financial-frictions

Deep learning as a tool for solving models

- Solving models in macro (and I.O., international trade, finance, game theory, ...) is, at its core, a functional approximation problem.
- Given some states $\mathbf{x} = \{x_1, x_2, ..., x_N\}$, we want to compute a function (or, more generally, an operator):

$$y = h(\mathbf{x})$$

such as a value function, a policy function, a best response function, a pricing kernel, an allocation, a probability distribution, ...

- We need to find a function that satisfies some optimality/equilibrium conditions.
- Usually, we do not know much about the functional form of $h(\cdot)$ or x is highly dimensional.
- Deep learning provides an extremely powerful framework to work through these problems.

Why is deep learning is a great functional approximation tool?

- Theory reasons:
 - 1. Deep learning is a universal nonlinear approximator. For example, it can tackle correspondences (e.g., multiplicity of equilibria).
 - 2. Deep learning breaks the "curse of dimensionality" (compositional approximations that require only "local" computations instead of additive ones).
- Practical reasons ⇒ deep learning involves algorithms that are:
 - 1. Easy to code.
 - 2. Implementable with state-of-the-art libraries.
 - 3. Stable.
 - 4. Scalable through massive parallelization.
 - 5. Can take advantage of dedicated hardware.

A basic example

• Take the canonical RBC model:

$$\begin{aligned} \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u\left(c_t, l_t\right) \\ c_t + k_{t+1} &= e^{z_t} k_t^{\alpha} l_t^{1-\alpha} + \left(1 - \delta\right) k_t, \ \forall \ t > 0 \\ z_t &= \rho z_{t-1} + \sigma \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1) \end{aligned}$$

- Examples of objects we are interested in approximating:
 - 1. Decision rules: $c_t = h(k_t, z_t)$.
 - $\text{2. Conditional expectations: } \textit{h}(\textit{k}_t, \textit{z}_t) = \mathbb{E}_t \left\{ \tfrac{\textit{u}'(\textit{c}_{t+1}, \textit{l}_{t+1})}{\textit{u}'(\textit{c}_t, \textit{l}_t)} \left(1 + \alpha e^{\textit{z}_{t+1}} \textit{k}_{t+1}^{\alpha 1} \textit{l}_{t+1}^{1 \alpha} \delta \right) \right\}.$
 - 3. Value functions: $h(k_t, z_t) = \max_{\{c_t, l_t\}} \{u(c_t, l_t) + \beta \mathbb{E}_t h(k_{t+1}, z_{t+1})\}.$

A parameterized solution

- General idea: substitute $h(\mathbf{x})$ by $h^{j}(\mathbf{x}, \theta)$ where θ is a vector of coefficients to be determined by satisfying some criterium indexed by j.
- Two classical approaches based on the addition of functions:
 - 1. Perturbation methods:

$$h^{PE}(\mathbf{x},\theta) = \vec{\theta_0} + \vec{\theta_1}(\mathbf{x} - \mathbf{x_0}) + (\mathbf{x} - \mathbf{x_0})'\vec{\theta_2}(\mathbf{x} - \mathbf{x_0}) + H.O.T.$$

We use implicit-function theorems to find θ .

2. Projection methods:

$$h^{PR}\left(\mathbf{x}, heta
ight)= heta_{0}+\sum_{m=1}^{M} heta_{m}\phi_{m}\left(\mathbf{x}
ight)$$

where ϕ_m is, for example, a Chebyshev polynomial.

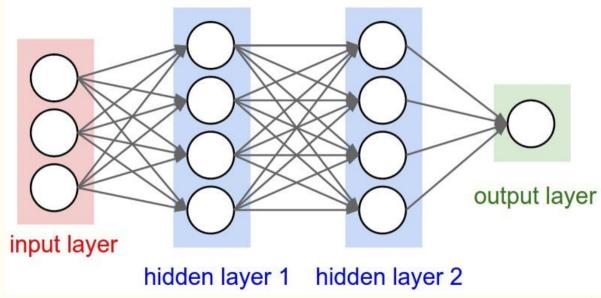
We pick a basis $\{\phi_m(\mathbf{x})\}_{i=0}^{\infty}$ and "project" the optimality/equilibrium conditions against that basis to find θ .

A neural network

• A (one-layer) neural network approximates $h(\mathbf{x})$ by using M times an activation function $\varphi(\cdot)$:

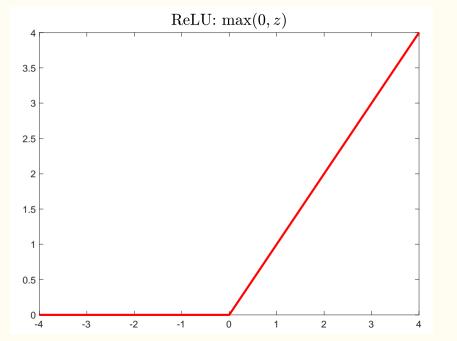
$$y = h(\mathbf{x}) \cong h^{NN}(\mathbf{x}; \theta) = \theta_0 + \sum_{m=1}^{M} \theta_m \varphi \left(\underbrace{\theta_{0,m} + \sum_{n=1}^{N} \theta_{n,m} x_n}_{z_m}\right)$$

- *M* is the width of the network.
- We can add more layers (i.e., x_n is transformed into x_n^1 by a similar composition of an activation function, and so on), but notation becomes heavy.
- The number of layers J is the depth of the network.
- We select θ such that $h^{NN}(\mathbf{x};\theta)$ is as close to $h(\mathbf{x})$ as possible given some relevant metric (e.g., L^2).
- This is called "training" the network (a lot of details need to be filled in here!).



Architecture of the network

- We pick the simplest activation function possible:
 - Easier to take derivatives (key while training the network).
- We select *M* and *J* following the same ideas that one uses to select how many grid points we use in value function iteration or how many polynomials with Chebyshev polynomials:
 - 1. We start with some default M and J and train the network. We assess approximation error.
 - 2. We vary M and J until the approximation error is minimized.



Two classic (yet remarkable) results

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)

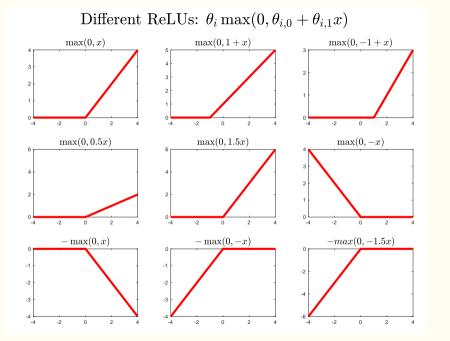
A neural network with at least one hidden layer can approximate any Borel measurable function mapping finite-dimensional spaces to any desired degree of accuracy.

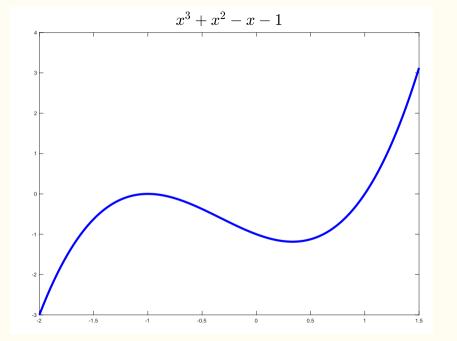
• Under some additional technical conditions:

Breaking the curse of dimensionality: Barron (1993)

A one-layer neural network achieves integrated square errors of order $\mathcal{O}(1/M)$, where M is the number of nodes. In comparison, for series approximations, the integrated square error is of order $\mathcal{O}(1/(M^{2/N}))$ where N is the dimensions of the function to be approximated.

• We can rely on more general theorems by Leshno et al. (1993) and Bach (2017).





A six ReLUs approximation $-\max(0, -7.7 - 5x)$ $-\max(0, -1.3 - 1.2x)$ $\max(0, 1 + 1.2x)$ -1 -2 -1 0 -2 -1 0 -1 0 $\max(0, -0.2 + 1.2x)$ $\max(0, -1.1 + 2x)$ $\max(0, -5 + 5x)$ 0

-1

-1

0

-1

0

Practical reasons

- Deep learning involves algorithms that are:
 - 1. Easy to code.
 - 2. Implementable with state-of-the-art libraries.
 - 3. Stable.
 - 4. Scalable through massive parallelization.
 - 5. Can take advantage of dedicated hardware.

Programming field-programmable gate arrays for economics

Dynamic programming

Solving high-dimensional dynamic programming problems using Deep Learning

- Solving High-Dimensional Dynamic Programming Problems using Deep Learning.
- Our goal is to solve the recursive continuous-time Hamilton-Jacobi-Bellman (HJB) equation globally:

$$\rho V(\mathbf{x}) = \max_{\alpha} r(\mathbf{x}, \alpha) + \nabla_{x} V(\mathbf{x}) f(\mathbf{x}, \alpha) + \frac{1}{2} tr(\sigma(\mathbf{x}))^{T} \Delta_{x} V(\mathbf{x}) \sigma(\mathbf{x})$$
s.t. $G(\mathbf{x}, \alpha) \leq \mathbf{0}$ and $H(\mathbf{x}, \alpha) = \mathbf{0}$,

- Think about the case where we have many state variables.
- Why continuous time?
- Alternatives for this solution?

Neural networks

- We define four neural networks:
 - 1. $\tilde{V}(\mathbf{x}; \boldsymbol{\Theta}^{V})$ to approximate the value function $V(\mathbf{x})$.
 - 2. $\tilde{\alpha}(\mathbf{x}; \boldsymbol{\Theta}^{\alpha})$ to approximate the policy function $\boldsymbol{\alpha}$.
 - 3. $\tilde{\mu}(\mathbf{x}; \boldsymbol{\Theta}^{\mu})$ and $\tilde{\lambda}(\mathbf{x}; \boldsymbol{\Theta}^{\lambda})$ to approximate the Karush-Kuhn-Tucker (KKT) multipliers $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$.
- To simplify notation, we accumulate all weights in the matrix $\Theta = (\Theta^V, \Theta^\alpha, \Theta^\mu, \Theta^\lambda)$.

Error criterion I

• The HJB error:

$$err_{HJB}(\mathbf{x}; \mathbf{\Theta}) \equiv r(\mathbf{x}, \tilde{\alpha}(\mathbf{s}; \mathbf{\Theta}^{\alpha})) + \nabla_{\mathbf{x}} \tilde{V}(\mathbf{x}; \mathbf{\Theta}^{V}) f(\mathbf{x}, \tilde{\alpha}(\mathbf{x}; \mathbf{\Theta}^{\alpha})) + \frac{1}{2} tr[\sigma(\mathbf{x})^{T} \Delta_{\mathbf{x}} \tilde{V}(\mathbf{x}; \mathbf{\Theta}^{V}) \sigma(\mathbf{x})] - \rho \tilde{V}(\mathbf{x}; \mathbf{\Theta}^{V})$$

The policy function error:

$$err_{\alpha}(\mathbf{x}; \boldsymbol{\Theta}) \equiv \frac{\partial r(\mathbf{x}, \tilde{\alpha}(\mathbf{x}; \boldsymbol{\Theta}^{\alpha}))}{\partial \alpha} + D_{\alpha} f(\mathbf{x}, \tilde{\alpha}(\mathbf{x}; \boldsymbol{\Theta}^{\alpha}))^{T} \nabla_{\mathbf{x}} \tilde{V}(\mathbf{x}; \boldsymbol{\Theta}^{V})$$
$$- D_{\alpha} G(\mathbf{x}, \tilde{\alpha}(\mathbf{x}; \boldsymbol{\Theta}^{\alpha}))^{T} \tilde{\mu}(\mathbf{x}; \boldsymbol{\Theta}^{\mu}) - D_{\alpha} H(\mathbf{x}, \tilde{\alpha}(\mathbf{x}; \boldsymbol{\Theta}^{\alpha})) \tilde{\lambda}(\mathbf{x}; \boldsymbol{\Theta}^{\lambda}),$$

where $D_{\alpha}G \in \mathbb{R}^{L_1 \times M}$, $D_{\alpha}H \in \mathbb{R}^{L_2 \times M}$, and $D_{\alpha}f \in \mathbb{R}^{N \times M}$ are the submatrices of the Jacobian matrices of G, H and f respectively containing the derivatives with respect to α .

Error criterion II

• The constraint error is itself composed of the primal feasibility errors:

$$err_{PF_1}(\mathbf{x}; \mathbf{\Theta}) \equiv \max\{0, G(\mathbf{x}, \tilde{\alpha}(\mathbf{x}; \mathbf{\Theta}^{\alpha}))\}$$

 $err_{PF_2}(\mathbf{x}; \mathbf{\Theta}) \equiv H(\mathbf{x}, \tilde{\alpha}(\mathbf{x}; \mathbf{\Theta}^{\alpha})),$

the dual feasibility error:

$$err_{DF}(\mathbf{x}; \mathbf{\Theta}) = \max\{0, -\tilde{\mu}(\mathbf{x}; \mathbf{\Theta}^{\mu})\},$$

and the complementary slackness error:

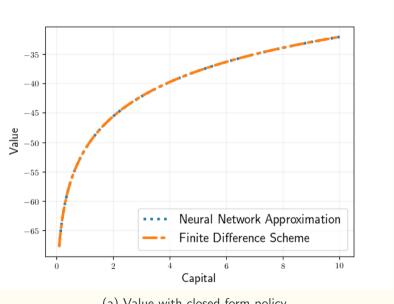
$$err_{CS}(\mathbf{x}; \mathbf{\Theta}) = \tilde{\mu}(\mathbf{x}; \mathbf{\Theta})^T G(\mathbf{x}, \tilde{\alpha}(\mathbf{x}; \mathbf{\Theta}^{\alpha})).$$

We combine these four errors by using the squared error as our loss criterion:

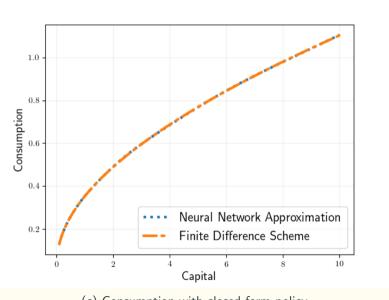
$$\mathcal{E}(\mathbf{x}; \boldsymbol{\Theta}) \equiv \left| \left| err_{HJB}(\mathbf{x}; \boldsymbol{\Theta}) \right| \right|_{2}^{2} + \left| \left| err_{\alpha}(\mathbf{x}; \boldsymbol{\Theta}) \right| \right|_{2}^{2} + \left| \left| err_{PF_{1}}(\mathbf{x}; \boldsymbol{\Theta}) \right| \right|_{2}^{2} + \left| \left| err_{CS}(\mathbf{x}; \boldsymbol{\Theta}) \right| \right|_{2}^{2} + \left| \left| err_{CS}(\mathbf{x}; \boldsymbol{\Theta}) \right| \right|_{2}^{2}$$

Training

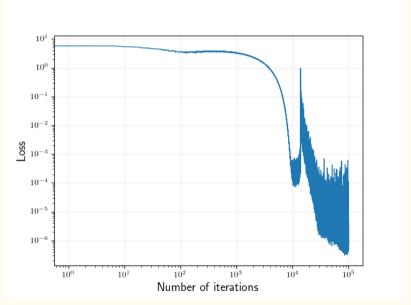
- We train our neural networks by minimizing the error criterion through mini-batch gradient descent over points drawn from the ergodic distribution of the state vector.
- ullet We start by initializing our network weights, and we perform K learning steps called epochs.
- For each epoch, we draw / points from the state space by simulating from the ergodic distribution.
- Then, we randomly split this sample into *B* mini-batches of size *S*. For each mini-batch, we define the mini-batch error, by averaging the loss function over the batch.
- Finally, we perform mini-batch gradient descent for all network weights, with η_k being the learning rate in the k-th epoch.



(a) Value with closed-form policy



(c) Consumption with closed-form policy



(e) HJB error with closed-form policy

A coda

- Exploiting Symmetry in High-Dimensional Dynamic Programming.
- We introduce the idea of permutation-invariant dynamic programming.
- Intuition.
- Solution has a symmetry structure we can easily exploit using representation theorems, concentration of measure, and neural networks.
- More in general: how do we tackle models with heterogeneous agents?

Models with heterogeneous agents

The challenge

- To compute and take to the data models with heterogeneous agents, we need to deal with:
 - 1. The distribution of agents G_t .
 - 2. The operator $H(\cdot)$ that characterizes how G_t evolves:

$$G_{t+1} = H(G_t, S_t)$$

or

$$\frac{\partial G_t}{\partial t} = H(G_t, S_t)$$

given the other aggregate states of the economy S_t .

• How do we track G_t and compute $H(G_t, S_t)$?

A common approach

- If we are dealing with N discrete types, we keep track of N-1 weights.
- If we are dealing with continuous types, we extract a finite number of features from G_t :
 - 1. Moments.
 - 2. Q-quantiles.
 - 3. Weights in a mixture of normals...
- ullet We stack either the weights or features of the distribution in a vector μ_t .
- We assume μ_t follows the operator $h(\mu_t, S_t)$ instead of $H(G_t, S_t)$.
- We parametrize $h(\mu_t, S_t)$ as $h^j(\mu_t, S_t; \theta)$.
- We determine the unknown coefficients θ such that an economy where μ_t follows $h^j(\mu_t, S_t; \theta)$ replicates as well as possible the behavior an economy where G_t follows $H(\cdot)$.

Example: Basic Krusell-Smith model

• Two aggregate variables: aggregate productivity shock and household distribution $G_t(a, z)$ where:

$$\int G_t(a,z)da=K_t$$

- We summarize $G_t(a,\cdot)$ with the log of its mean: $\mu_t = \log K_t$ (extending to higher moments is simple, but tedious).
- We parametrize $\underbrace{\log K_{t+1}}_{\mu_{t+1}} = \underbrace{\theta_0(s_t) + \theta_1(s_t) \log K_t}_{h^j(\mu_t, s_t; \theta)}.$
- We determine $\{\theta_0(s_t), \theta_1(s_t)\}$ by OLS run on a simulation.

Problems

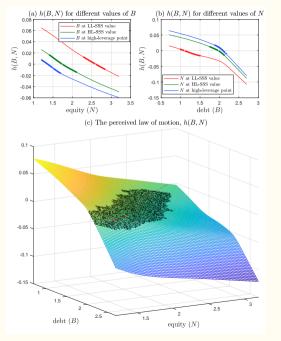
- No much guidance regarding feature and parameterization selection in general cases.
 - Yes, keeping track of the log of the mean and a linear functional form work well for the basic model. But, what about an arbitrary model?
 - Method suffers from "curse of dimensionality": difficult to implement with many state variables or high N/higher moments.
 - Lack of theoretical foundations (Does it converge? Under which metric?).

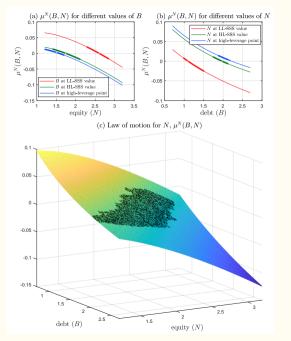
How can deep learning help?

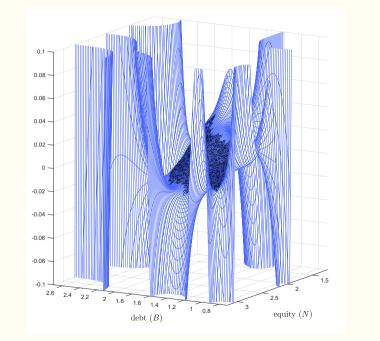
- Deep learning addresses challenges:
 - 1. How to extract features from an infinite-dimensional object efficiently.
 - 2. How to parametrize the non-linear operator mapping how distributions evolve.
 - 3. How to tackle the "curse of dimensionality."
- Given time limitations, today I will discuss the last two points.
- In our notation of y = h(x):
 - 1. $y = \mu_{t+1}$.
 - 2. $\mathbf{x} = (\mu_t, S_t)$.

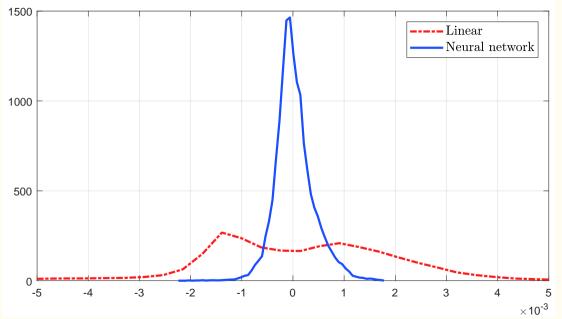
The algorithm in "Financial Frictions and the Wealth Distribution"

- Model with a distribution of households over asset holding and labor productivity.
- We keep track, as in Krusell-Smith, of moments of distribution.
- Algorithm:
 - 1) Start with h_0 , an initial guess for h.
 - 2) Using current guess h_n , solve for agent's problem.
 - 3) Construct time series $\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_J\}$ and $\hat{\mathbf{y}} = \{\hat{\mathbf{y}}_1, \hat{\mathbf{y}}_2, ..., \hat{\mathbf{y}}_J\}$ for aggregate variables by simulating J periods the cross-sectional distribution of agents (starting at a steady state and with a burn-in).
 - 4) Use $(\widehat{\mathbf{y}}, \mathbf{x})$ to train h_{n+1} , a new guess for h.
 - 5) Iterate steps 2)-4) until h_{n+1} is sufficiently close to h_n .





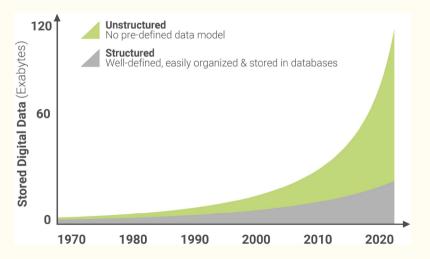




Structural estimation with unstructured data

New data

• Unstructured data: Newspaper articles, business reports, congressional speeches, FOMC meetings transcripts, satellite data, ...



Motivation

- Unstructured data carries information on:
 - 1. Current state of the economy (Thorsrud, 2017, Bybee et al., 2019).
 - 2. Beliefs about current and future states of the economy.
- An example:

From the minutes of the FOMC meeting of September 17-18, 2019

Participants agreed that consumer spending was increasing at a strong pace. They also expected that, in the period ahead, household spending would likely remain on a firm footing, supported by strong labor market conditions, rising incomes, and accommodative financial conditions. [...]

Participants judged that trade uncertainty and global developments would continue to affect firms' investment spending, and that this uncertainty was discouraging them from investing in their businesses. [...]

Our goal

- Since:
 - 1. This information might go over and above observable macro series (e.g., agents' expectations and sentiment).
 - 2. And it might go further back in history, is available for developing countries, or in real time.
- How do we incorporate unstructured data in the estimation of structural models?
- Potential rewards:
 - 1. Determine more accurately the latent structural states.
 - 2. Reconcile agents' behavior and macro time series.
 - 3. Could change parameters values (medium-scale DSGE models typically poorly identified).

Application and data

• Our application:

Text Data: Federal Open Market Committee (FOMC) meeting transcripts.

Model: New Keynesian dynamic stochastic general equilibrium (NK-DSGE) model.

• Our strategy:

Right Now:

- Latent Dirichlet Allocation (LDA) for dimensionality reduction ⇒ from words to topic shares.
- 2. Cast the linearized DSGE solution in a state-space form.
- 3. Use LDA output as additional observables in the measurement equation.
- 4. Estimation with Bayesian techniques.

Going Forward: Model the data generating process for text and macroeconomic data *jointly*.

Preliminary findings

- 1. Using FOMC data for estimation sharpens the likelihood.
- 2. Posterior distributions more concentrated.
- 3. Especially true for parameters related to the hidden states of the economy and to fiscal policy.
- 4. FOMC data carries extra information about fiscal policy and government intentions

Latent Dirichlet Allocation (LDA) •LDA Details

• How does it work?

- LDA is a Bayesian statistical model.
- Idea: (i) each document is described by a distribution of K (latent) topics and (ii) each topic is described by a distribution of words.
- Use word co-occurrence patterns + priors to assign probabilities.
- Key of LDA dimensionality reduction **topic shares** $\varphi_t \Rightarrow$ amount of time document spends talking about each topic k.

Why do we like it?

- Tracks well attention people devote to different topics.
- Automated and easily scalable.
- Bayesian model natural to combine with structural models.

DSGE state space representation

Log-linearized DSGE model solution has the form of a generic state-space model:

• Transition equation:

$$\underbrace{s_{t+1}}_{\text{Structural States}} = \Phi_1(\theta) s_t + \Phi_{\epsilon}(\theta) \epsilon_t, \quad \epsilon_t \sim \textit{N}(0,\textit{I})$$

• Measurement equation:

$$egin{equation} Y_t &= \Psi_0(heta) + \Psi_1(heta) s_t \ & ext{Macroeconomic Observables} \end{aligned}$$

 \bullet θ vector that stacks all the structural parameters.

▶ System Matrices

Topic dynamic factor model

• Allow the topic time series φ_t to depend on the model states:

$$\underbrace{\varphi_t}_{ ext{Topic Shares}} = T_0 + T_1 \underbrace{s_t}_{ ext{Structural States}} + \Sigma \underbrace{u_t}_{ ext{Measurement Error}}, \quad u_t \sim \textit{N}(0, \textit{I})$$

- Interpretable as a **dynamic factor model** in which the structure of the DSGE model is imposed on the latent factors.
- Akin to Boivin and Giannoni (2006) and Kryshko (2011).

Augmented measurement equation

• Augmented measurement equation

$$\underbrace{\begin{pmatrix} Y_t \\ \varphi_t \end{pmatrix}}_{\text{New vector of observables}} = \begin{pmatrix} \Psi_0(\theta) \\ T_0 \end{pmatrix} + \begin{pmatrix} \Psi_1(\theta) \\ T_1 \end{pmatrix} s_t + \begin{pmatrix} 0_{4\times4} & 0_{4\times k} \\ 0_{k\times4} & \Sigma \end{pmatrix} u_t, \quad u_t \sim N(0, I)$$

- · If text data carries relevant information, its use should make the estimation more efficient.
- General approach: any numerical machine learning output and structural model (DSGE, IO, labor...)
 will work.

FOMCs transcripts data

- Available for download from the Federal Reserve website.
- Provide a nearly complete account of every FOMC meeting from the mid-1970s onward.
- Transcripts are divided into two parts:
 - FOMC1: members talk about their reading of the current economic situation.
 - FOMC2: talk about monetary policy strategy.
- We are interested in the information on the current state of the economy and the beliefs that
 policymakers have on it ⇒ focus on FOMC1 section from 1987 to 2009.
- Total of 180 meetings.

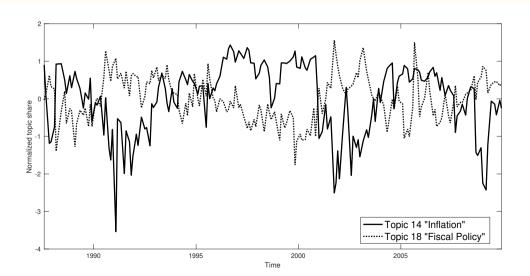
Topic composition

• Example of two topics with K = 20.

(a) Topic 8

(b) Topic 14

Topic shares



New Keynesian DSGE model

Conventional New Keynesian DSGE model with price rigidities:

Agents:

- Representative household.
- Perfectly competitive final good producer.
- Continuum of intermediate good producers with market power.
- Fiscal authority that taxes and spends.
- Monetary authority that sets the nominal interest rate.

States:

- 4 Exogenous states.
- Demand, productivity, government expenditure, monetary policy.
- Modelled as AR(1)s

Parameters:

• 12 Structural parameters to estimate.

► Equilibrium Equations

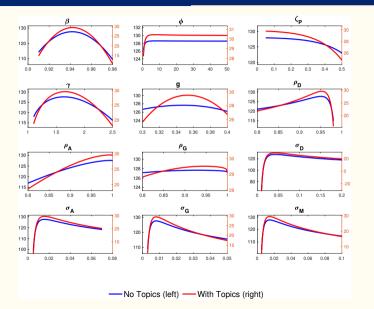
Exogenous Processes

► Structural Parameters Recap

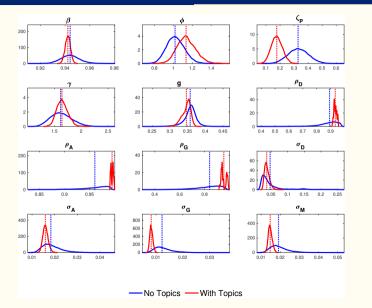
Bayesian estimation

- We estimate two models for comparison:
 - New Keynesian DSGE model alone (standard).
 - New Keynesian DSGE Model + measurement equation with topic shares (new).
- Total parameters to estimate: 12 structural parameters $(\theta) + 120$ topic dynamic factor model parameters (T_0, T_1, Σ) assuming covariances are 0).
- Pick standard priors on structural parameters.
- Priors on topic related parameters?
 - Use MLE to get an idea of where they are.
 - Use conservative approach: center all parameters quite tightly around 0.
- Random-walk Metropolis Hastings to obtain draws from the posterior.

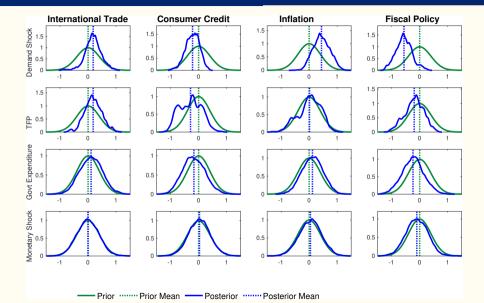
Likelihood comparison



Posterior distributions for structural parameters



Posterior distributions for selected topic parameters



Going forward: Joint model

- Extend the model in two ways:
 - 1. Model the dependence of latent topics on the hidden structural states directly.
 - 2. Allow for autocorrelation among topic shares.
- Instead of first creating φ_t and then using it for estimation, want to model the generating process of both text and macroeconomic observables together.
- Why a joint model?
 - Conjecture the topic composition and topic share will be more precise and more interpretable as a result.
 - Properly take into account the uncertainty around the topic shares.

Going forward: Joint model

New vector of augmented states:

$$\widetilde{s}_t = \left(egin{array}{c} s_t \ arphi_{t-1} \end{array}
ight)$$

• New vector of observables:

$$\widetilde{Y}_t = \left(\begin{array}{c} Y_t \\ \mathbf{w}_t \end{array} \right)$$

• Stacks both the "traditional" observables Y_t and the text \mathbf{w}_t .

Joint state space representation

Transition equation (linear):

$$\begin{array}{lll} \mathbf{s}_{t+1} & = \Phi(\theta)\mathbf{s}_t + \Phi_{\epsilon}(\theta)\epsilon & \leftarrow \text{same as before} \\ \varphi_t & = T_s\mathbf{s}_t + T_\varphi\varphi_{t-1} + \Sigma_e e_t & \leftarrow \text{new} \end{array}$$

• Measurement equation (non-linear):

$$\widetilde{Y}_t \sim p\left(\widetilde{Y}_t|\widetilde{s}_t\right) = egin{pmatrix} \Psi_1(heta)s_t \ p(\mathbf{w}_t|\widetilde{s}_t) \end{pmatrix}$$

• Challenges: algorithm for estimation, impact of choice of priors.

LDA assumes the following generative process for each document W of length N:

- 1. Choose topic proportions $\varphi \sim \text{Dir}(\vartheta)$. Dimensionality K of the Dirichlet distribution. Thus, dimensionality of the topic variable is assumed to be known and fixed.
- 2. For each word n = 1, ..., N:
 - 2.1 Choose one of K topics $z_n \sim \text{Multinomial }(\varphi)$.
 - 2.2 Choose a term w_n from $p(w_n|z_n,\beta)$, a multinomial probability conditioned on the topic z_n . β is a $K \times V$ matrix where $\beta_{i,j} = p(w^j = 1|z^i = 1)$. We assign a symmetric Dirichlet prior with V dimensions and hyperparameter η to each β_k .

Posterior:

$$p(\varphi, z, \beta | W, \vartheta, \eta) = \frac{p(\varphi, z, W, \beta | \vartheta, \eta)}{p(W | \vartheta, \eta)}$$

Model equilibrium equations (log-linearized) ••••••

$$\widehat{c}_{t} - \widehat{d}_{t} = \mathbb{E}_{t} \{ \widehat{c}_{t+1} - \widehat{d}_{t+1} - \widehat{R}_{t} + \widehat{\Pi}_{t+1} \}$$

$$\widehat{\Pi}_{t} = \kappa \left((1 + \phi c) \, \widehat{c}_{t} + \phi g \widehat{g}_{t} - (1 + \phi) \, \widehat{A}_{t} \right) + \beta \mathbb{E}_{t} \widehat{\Pi}_{t+1}$$

$$\widehat{R}_{t} = \gamma \widehat{\Pi}_{t} + m_{t}$$

$$\widehat{l}_{t} = \widehat{y}_{t} - \widehat{A}_{t} = c \, \widehat{c}_{t} + g \, \widehat{g}_{t} - \widehat{A}_{t}$$

Exogenous States Processes • Back

$$\begin{split} \log d_t &= \rho_d \log d_{t-1} + \sigma_d \varepsilon_{d,t} \\ \log A_t &= \rho_A \log A_{t-1} + \sigma_A \varepsilon_{A,t} \\ \log g_t &= \rho_g \log g_{t-1} + \sigma_g \varepsilon_{g,t} \\ m_t &= \sigma_m \varepsilon_{mt} \end{split}$$

Parameters Recap (*Back)

Paran	n Description	Param	Description				
Stead	ly-state-related parameters	Exoge	genous shocks parameters				
β	Discount factor	ρ_{D}	Persistence demand shock				
g	SS govt expenditure/GDP	$ ho_{A}$	Persistence TFP				
	genous propagation parameters	$ ho_G$	Persistence govt expenditure s.d. demand shock innovation				
ϕ	Inverse Frisch elasticity	σ_{A}	s.d. TFP shock				
ζ_P	Fraction of fixed prices	$\sigma_{\sf G}$	s.d. govt expenditure shock				
γ	Taylor rule elasticity	$\sigma_{\it G}$	s.d. monetary shock				

State space matrices • Back

Law of motion for the states of the economy is:

$$\underbrace{\begin{pmatrix} \widehat{d}_{t+1} \\ \widehat{A}_{t+1} \\ \widehat{g}_{t+1} \\ m_{t+1} \end{pmatrix}}_{s_{t+1}} = \underbrace{\begin{pmatrix} \rho_d & 0 & 0 & 0 \\ 0 & \rho_A & 0 & 0 \\ 0 & 0 & \rho_g & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{\Phi_1(\theta)} \underbrace{\begin{pmatrix} \widehat{d}_t \\ \widehat{A}_t \\ \widehat{g}_t \\ m_t \end{pmatrix}}_{s_t} + \underbrace{\begin{pmatrix} \sigma_d & 0 & 0 & 0 \\ 0 & \sigma_A & 0 & 0 \\ 0 & 0 & \sigma_g & 0 \\ 0 & 0 & 0 & \sigma_m \end{pmatrix}}_{\Phi_{\epsilon}(\theta)} \underbrace{\begin{pmatrix} \varepsilon_{d,t+1} \\ \varepsilon_{A,t+1} \\ \varepsilon_{g,t+1} \\ \varepsilon_{m,t+1} \end{pmatrix}}_{\epsilon_t}$$

and for observables:

$$\underbrace{\begin{pmatrix} \log c_t \\ \log \Pi_t \\ \log R_t \\ \log l_t \end{pmatrix}}_{Y_t} = \underbrace{\begin{pmatrix} \log (1-g) \\ 0 \\ -\log \beta \\ 0 \end{pmatrix}}_{\Psi_0(\theta)} + \underbrace{\begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ \gamma b_1 & \gamma b_2 & \gamma b_3 & 1 + b_4 \\ ca_1 & ca_2 - 1 & 1 + ca_3 & ca_4 \end{pmatrix}}_{\Psi_1(\theta)} \underbrace{\begin{pmatrix} \widehat{d}_t \\ \widehat{A}_t \\ \widehat{g}_t \\ m_t \end{pmatrix}}_{S_t}$$

Prior distribution I Back

Param	Description	Domain	Density	Param 1	Param 2	
Steady	-state-related parameters					
β	Discount factor	(0,1)	Beta	0.95	0.05	
g	SS govt expenditure/GDP	(0,1)	Beta	0.35	0.05	
Endoge	enous propagation paramet	ers				
$\overline{\phi}$	Inverse Frisch elasticity	\mathbb{R}_{+}	Gamma 1		0.1	
ζ_P	Fraction of fixed prices	(0, 1)	Beta	0.4	0.1	
γ	Taylor rule elasticity	\mathbb{R}_{+}	Gamma	1.5	0.25	

Prior distribution II (Back)

Exoge	nous shocks parameters				
$ ho_D$	Persistence demand shock	(0, 1)	Uniform	0	1
$ ho_{\mathcal{A}}$	Persistence TFP	(0, 1)	Uniform	0	1
$ ho_{G}$	Persistence govt expenditure	(0, 1)	Uniform	0	1
σ_{D}	s.d. demand shock innovation	\mathbb{R}_{+}	InvGamma	0.05	0.2
σ_{A}	s.d. TFP shock	\mathbb{R}_+	InvGamma	0.05	0.2
$\sigma_{\it G}$	s.d. govt expenditure shock	\mathbb{R}_+	InvGamma	0.05	0.2
σ_{G}	s.d. monetary shock	\mathbb{R}_+	InvGamma	0.05	0.2
Topic	parameters				
$T_{0,k}$	Topic baseline	\mathbb{R}	Normal	0	0.1
$T_{1,k,s}$	Topic elasticity to states	\mathbb{R}	Normal	0	0.4
σ_k	s.d. measurement error	\mathbb{R}_{+}	InvGamma	0.2	0.1

Topics ranked by pro-cyclicality

												, P	ro-cyclicality	- 0
Topic0	inflat	price	increas	product	wage	cost	rise	growth	trend	labor	core	pressur	0.053	ľ
Topic1	percent	year	quarter	rate	growth	forecast	last	month	greenbook	inflat	project	expect	0.014	ı
Topic2	statement	meet	chang	will	risk	word	discuss	polici	market	issu	view	languag	0.011	ı
Topic3	forecast	model	inflat	rate	greenbook	term	differ	chang	use	assumpt	shock	question	0.01	ŀ
Topic4	district	nation	continu	area	region	remain	employ	manufactur	economi	report	activ	sector	0.007	ı
Topic5	move	data	can	look	number	will	evid	signific	may	quit	economi	point	0.007	ı
Topic6	move	chairman	mr	support	direct	point	recommend	agre	asymmetr	prefer	tighten	eas	0.004	ı
Topic7	question	know	want	someth	thing	look	realli	peopl	tri	number	talk	ask	0.002	ľ
Topic8	dollar	unitedstates	import	export	countri	foreign	price	growth	forecast	oil	effect	japan	0.002	ı
Topic9	forecast	quarter	project	data	spend	inventori	will	revis	recent	expect	anticip	month	0.002	ı
Topic10	presid	ye	governor	parri	okay	thank	break	stern	vice	hoenig	minehan	laughter	0.001	ŀ
Topic11	year	line	right	panel	shown	chart	expect	percent	project	next	middl	left	0.0	ı
Topic12	period	committe	run	consist	monetari	rate	might	aggreg	target	rang	econom	borrow	0.0	ı
Topic13	polici	rate	inflat	might	market	economi	expect	tighten	may	term	committe	eas	-0.001	ı
Topic14	year	report	busi	sale	product	increas	price	industri	compani	contact	continu	firm	-0.007	- 1
Topic15	bank	market	credit	rate	incom	debt	financi	loan	consum	fund	interest	household	-0.015	ı
Topic16	economi	will	can	seem	time	problem	believ	know	rather	much	world	may	-0.015	
Topic17	side	littl	look	seem	much	realli	term	lot	pretti	quit	certainli	concern	-0.017	L
Topic18	risk	economi	continu	growth	seem	may	recoveri	will	busi	confid	remain	outlook	-0.02	
Topic19		effect	fiscal	ta	cut	term	budget	time	uncertainti	probabl	state	spend	-0.04	

We assume the following generative process for a document:

- 1. Draw $\varphi_t | \varphi_{t-1}, s_t, T_{\varphi}, T_s, \Sigma^e \sim N(\varphi_0 + T_{\varphi} \varphi_{t-1} + T_s s_t, \Sigma^e)$.
- 2. To map this representation of topic shares into the simplex, use the softmax function: $f(\varphi_t) = \exp \varphi_{t,i} / \sum_i \exp \varphi_{t,j}.$
- 3. For each word n = 1, ..., N:
 - 3.1 Draw topic $z_{n,t} \sim \text{Mult}(f(\varphi_t))$.
 - 3.2 Draw term $w_{n,t} \sim \text{Mult}(\beta_{t,z})$.

Then, the distribution of text conditional on the states, $p(\mathbf{w}_t|\widetilde{s}_t)$, is given by:

$$p(\mathbf{w}_t|\widetilde{s}_t) = \int p(\varphi_t|\widetilde{s}_t) \left(\prod_{n=1}^N \sum_{z_{n,t}} p(z_{n,t}|\varphi_t) p(w_{n,t}|z_{n,t},\beta_t) \right) d\varphi_t$$

Conclusions

- Deep learning has tremendous potential for macroeconomics.
- Great theoretical and practical reasons for it.
- Many potential applications.